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Abstract: P-glycoprotein (P-gp) functions as a drug efflux
pump, mediating multidrug resistance and limiting the efficacy
of many drugs. Clearly, identification of potential P-gp sub-
strate liability early in the drug discovery process would be
advantageous. We describe a multiple-pharmacophore model
that can discriminate between substrates and nonsubstrates
of P-gp with an accuracy of 63%. The application of this filter
allows large virtual libraries to be screened efficiently for
compounds less likely to be transported by P-gp.

Introduction. P-glycoprotein (P-gp), encoded by the
highly conserved MDR (multidrug resistance) genes, is
a 170 kDa member of the ATP-binding cassette super-
family of membrane transporters. As a membrane
transport protein, P-gp is distinctive in that it transports
a wide variety of xenobiotic and cytotoxic endogenous
chemical agents out of the cell at the expense of ATP
hydrolysis. Substrates transported by P-gp include
chemically and mechanistically unrelated drugs such as
cancer therapeutics doxorubicin and paclitaxel, HIV
protease inhibitors amprenavir and indinavir, cardiac
drugs digoxin and quinidine, and chemicals from many
other drug classes. P-gp is abundant in cells with a
protective barrier function, including the luminal mem-
brane of the endothelial cells comprising the blood-brain
barrier and the apical membrane of mucosal cells in the
intestine. The effect of P-gp mediated drug efflux on
limiting intestinal absorption and oral bioavailability
and on tissue distribution (e.g., brain penetration) can

have implications for the efficacy of drug regimens that
include P-gp substrates.

P-gp mediated drug efflux is one of the major ob-
stacles in the success of cancer therapeutics, as high
expression of P-gp is observed in many cancer cells.1
Many cytotoxic chemotherapeutic agents, such as an-
thracyclines or vinca alkaloids, induce the up-regulation
and overexpression of P-gp. High levels of P-gp result
in a lower intracellular accumulation of drug and an
increase in efflux. As a result of exposure to an
“inducer”, the cells become resistant to a broad spectrum
of structurally and mechanistically dissimilar cytotoxic
drugs. This phenomenon is known as multidrug resis-
tance. P-gp overexpression may also play a significant
role in the development of resistance to antibiotics2 and
in diminished efficacy of HIV drugs.3,4 One promising
approach to overcoming the MDR phenotype employs
compounds that inhibit P-gp transport as MDR reversal
(MDRR) agents. Several studies have investigated the
structure-activity relationships for MDRR agents to
derive models that may be useful in designing new
MDRR agents.5,6 Another approach to circumvent MDR
is to identify the potential for P-gp activity in com-
pounds early in the drug discovery process and to select
drug candidates that are less likely to be transported
by P-gp. Knowledge of the factors that determine P-gp
substrate specificity is crucial for this second approach.

The molecular mechanism of P-gp mediated transport
is not well understood. In part, this is due to the lack of
an atomic resolution structure for this transmembrane
protein composed of two homologous halves, each con-
taining six putative transmembrane R-helices.7-9 In the
absence of a high-resolution structure for P-gp, the
structural features for recognition must be derived from
analyses of the chemicals transported by P-gp. In
contrast to other transport proteins, which recognize
specific classes of compounds such as peptides or
carbohydrates, P-gp exhibits a very broad specificity in
substrate recognition. A number of structure-activity
studies for related series of compounds have identified
structural properties reflecting the amphiphilic nature
of compounds that interact with P-gp: the presence of
aromatic ring structures,10 hydrophobicity, in general,11

and nitrogens or hydrogen bond acceptor groups.12 A
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structure-activity study of propafenone analogues dem-
onstrated a strong correlation between hydrogen bond
acceptor strength and P-gp inhibitory potency.12 An-
other computational study of 22 diverse drugs revealed
that molecular descriptors associated with strong hy-
drogen bonding strength and high polarizability pro-
mote increased P-gp ATPase activity.13 From an analy-
sis of three-dimensional structures for a larger diverse
set of drugs, Seelig identified two specific recognition
elements for P-gp composed of hydrogen bond acceptor
units with distinct spatial arrangements.14 Seelig refers
to two hydrogen bond acceptors separated by 2.5 ( 0.3
Å as a type I pattern. Type II patterns are formed by
two hydrogen bond acceptors separated by 4.6 ( 0.6 Å
or three hydrogen bond acceptors separated by 2.5 (
0.3 Å with a 4.6 ( 0.6 Å separation of the outer two
acceptor groups. Molecules with at least one type I or
type II unit are predicted by Seelig to be transported
by P-gp, and molecules containing one or more type II
units are predicted by Seelig to induce overexpression
of P-gp.

In this Letter, we describe the automated generation
of a computational model, composed of a set or ensemble
of two-to-four point pharmacophores, which discrimi-
nates between P-gp substrates and nonsubstrates. The
model has an overall classification success rate of 80%
for the training set and 63% for a hold-out set. The
predominant chemical features of the pharmacophore
ensemble reflect the amphiphilic nature of P-gp sub-
strates and include combinations of hydrophobic or
aromatic groups, hydrogen bond acceptors, and hydro-
gen bond donors. The ensemble model can be used as a
computational filter to rapidly screen large virtual
libraries to deselect compounds that are likely to be
substrates for P-gp.

Dataset Description. Using the Seelig study as a
starting point,14,15 we assembled a data set of 195
compounds from literature sources and personal com-
munications. Compounds were classified as P-gp sub-
strates if they were reported to be transported by P-gp;
this class includes many compounds that are also
reported to induce the overexpression of P-gp and
thereby contribute to MDR, such as phenobarbital.16

Compounds were designated P-gp nonsubstrates if they
were not transported by P-gp. This set includes com-
pounds such as progesterone and tamoxifen that are
noted to be bound but not transported by P-glycoprotein.
This binary classification scheme reduces the error
associated with the amalgamation of measurements
from different labs, assays, cell types, and conditions.

A hold-out data set (∼25%) was selected randomly
from the 195 compounds collected from the literature.
This test set contained 32 P-gp substrates and 19
nonsubstrates. The remaining 144 compounds including
76 substrates and 68 nonsubstrates were used as the
training data set to derive the computational model.

The average pairwise Tanimoto similarity calculated
for the Daylight17 fingerprints of all 195 compounds is
0.18, which reflects the broad chemical diversity of the
data set. Likewise, the training data set and the test
data set share an average pairwise Daylight similarity
of 0.18. Comparing the P-gp substrates to the P-gp
nonsubstrates gives an average Daylight similarity of
0.17.

Computational Model Building. In constructing
the computational filter, we used pharmacophore-based

three-dimensional whole molecule descriptors. Pharma-
cophore descriptions of molecules and their application
to virtual library searching and design have been
described elsewhere18 and will only be summarized here.
As an example, one major component of our 3D descrip-
tors is the “four-point pharmacophore”, which consists
of four chemical features, selected from hydrogen-bond
acceptors and donors, hydrophobes, negative and posi-
tive charges, and aromatic groups, and the associated
six interfeature distances. Similar to Mason and
Cheney,19,20 a “molecular signature” was created for
each molecule by generating a full conformational
model, followed by mapping the presence or absence of
all 2-, 3-, and 4-point pharmacophores that were present
in the molecule’s conformers into a single bit string. The
set of possible pharmacophores was constrained such
that each pharmacophore could contain at most two
hydrophobic features. This resulted in a signature
length of ∼12 million bits.

We generated the conformational model for each
compound using an in-house program, CONAN.21,22 In
the generation of conformers for the P-gp data set, we
allowed for a maximum number of conformers of 100
per stereoisomer. The resulting average number of
conformers per molecule was 111.

To select the subset of all pharmacophores that is best
able to differentiate substrates and nonsubstrates, the
signatures from the 144 structurally diverse training
set compounds were systematically analyzed in the
context of their associated activity data. We considered
each of the 3 million pharmacophores sampled by these
molecules to be a separate hypothesis that potentially
predicts P-gp activity. Each pharmacophore was ranked
on the basis of its ability to discriminate between
substrates and nonsubstrates. The ranking criterion
was “information content”, which was calculated using
a previously published formula.23 The pharmacophores
with the greatest information content taken together
comprised the “ensemble model” for P-glycoprotein
activity. To assess the significance of the information
content values, the substrate and nonsubstrate assign-
ments were randomly permuted in 50 trials to deter-
mine the (average) information content level expected
from random chance correlations in the data set. This
test revealed that ∼3450 pharmacophores had values
for information content greater than the expected
random noise level for information content in the data
set. Further, ∼1030 of the pharmacophores had infor-
mation content values greater than one standard devia-
tion above the mean random noise.

Ensembles of the top 1000, 500, 200, and 100 phar-
macophores were further analyzed by plotting the
fraction of the compounds in each set (substrate and
nonsubstrate) versus the number of pharmacophores
from the ensemble matched. Visual inspection of these
plots revealed overall similar performance for each
ensemble size; for each, it was possible to identify an
ensemble filter that would flag a large fraction of the
substrate data set and pass a large portion of the
nonsubstrate molecules. The final informative ensemble
selected to balance these goals contained 100 pharma-
cophores, and its performance is demonstrated in Figure
1.

Once an ensemble model is developed that has such
discriminating behavior, criteria for virtual library
search/screening are determined. The number of phar-
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macophores, or fraction, of the ensemble matched that
provides the greatest separation between the substrates
and nonsubstrates is chosen as the threshold for a
virtual filter. Using Figure 1, the threshold for the P-gp
ensemble was set at 20 pharmacophores matched. When
this threshold is applied to a pool of compounds, those
matching at least 20 of the 100 pharmacophores in the
ensemble are likely to be P-gp substrates. A large
fraction of the substrates is identified correctly by this
filter, while a large fraction of the nonsubstrates is not
“flagged”. With this model, all compounds that match
fewer than 20 pharmacophores in the ensemble would
be considered as synthetic candidates because they are
predicted to be less likely to be transported by P-gp.

Results and Discussion. As demonstrated in Figure
1 and further summarized in Table 1, the model
correctly classifies 80% of the compounds as substrates
or nonsubstrates. The false negative rate of incorrectly
classifying nonsubstrates as substrates is very low with
96% of the nonsubstrates correctly identified. The false
positive rate is 36%, as 27 of the 76 P-gp substrates are
incorrectly classified as nonsubstrates. The error bars
in Figure 1 represent the results of 10 trials of leave-
one-out cross-validation on the training set, for which
the average pairwise pharmacophore overlap (identity)
in each ensemble is 82.5%.

We further analyzed the performance and generaliza-
tion of this computational filter by applying it to a
diverse test set, composed of 32 P-gp substrates and 19
nonsubstrates. Using the threshold of matching at least
20 of the 100 pharmacophores of the ensemble, 53% of
the P-gp substrates were correctly identified by the
computational filter, while only 21% of the nonsub-
strates were incorrectly predicted to be P-gp substrates.
To further assess whether the ensemble model described
above generalizes well, a cross-validation approach was
used in which 144 compounds from the full data set
were randomly selected for training in each of 10 trials.
The performance plot mimics that shown in Figure 1,
with average classifications as substrate for the “train-
ing set” substrates (61%) and nonsubstrates (6%), and
“hold-out” substrates (53%) and nonsubstrates (19%),
comparable to that reported in Table 1.

The overall prediction success for the ensemble per-
formance on the hold-out set is 63%, and the success
rate is 79% for the nonsubstrates. Greater success with
the classification of nonsubstrates than P-gp compounds
overall was also reported by Stouch and co-workers, who
developed a QSAR model for P-gp substrate activity.24

On the basis of the performance with test and training
sets, the model could be used to design a library with
fewer compounds that are P-gp liabilities by filtering a
virtual library to remove 50-60% of the compounds
likely to be P-gp substrates, without significant loss of
likely nonsubstrates.

While four-point pharmacophores are typically the
dominant element of our ensemble models, three-point
pharmacophores also represent a large component of the
top 100 most informative pharmacophores presumably
because of the higher diversity present among P-gp
substrates. The ensemble contains 53 four-point phar-
macophores, 39 three-point pharmacophores, and 8 two-
point pharmacophores. The informative pharmacoph-
ores contain combinations of four of the six possible
feature types: hydrogen bond acceptors, hydrogen bond
donors, hydrophobic groups, and aromatic rings. As also
reported by others,12,14 the hydrogen bond acceptor or
electron donor group is observed to be an important
chemical feature associated with P-gp substrate activity.
Eighty-eight of the 100 pharmacophores composing the
ensemble contain at least one hydrogen bond acceptor
feature. Furthermore, 22 pharmacophores contain two
acceptors and nine pharmacophores contain three hy-
drogen bond acceptors. Contained in these pharmacoph-
ores are examples of the type I and type II recognition
units composed of two hydrogen bond acceptors sepa-
rated by a distances of 2.5 or 4.6 Å described by Seelig14

(Figure 2).
A hydrogen bond donor is present in 97 of the 100

pharmacophores composing the ensemble model, includ-
ing the pharmacophore with the highest information
content (Figure 2c). While chemical features that may
function as a hydrogen-bond donor such as a basic
nitrogen have previously been reported to be associated
with P-gp activity,10 the predominance of hydrogen bond
donors in the most informative pharmacophores is in
contrast to several other studies13,14 that suggest that
the hydrogen bonding strength is due to the presence
of hydrogen bond acceptors. A study of pesticides by
Bain et al. suggested that P-gp transport substrates
have high molecular weights, lower log Kow values, and
greater hydrogen-bonding potential due to hydrogen

Figure 1. Pharmacophore ensemble model performance
graph for the P-gp. The ensemble model is evaluated by
plotting the number of pharmacophores matched from the
ensemble versus the fraction of molecules (substrate and
nonsubstrate). The graph shows the average results of 10
leave-one-out cross-validation trials with the error bars indi-
cating the standard deviation of the trials for the training
substrates (blue) and nonsubstrates (magenta). The graph also
depicts the performance of the model on the test set, shown
for the substrates (green) and nonsubstrates (cyan). A thresh-
old of 20 pharmacophores matched provides a good model for
discriminating between P-gp substrates and nonsubstrates.

Table 1. Classification Success When at Least 20
Pharmacophores in the Ensemble Model Are Matched

data set

no.
in
set

% classified
as substrates/
nonsubstrates

no. classified
correctly/

incorrectly

% correctly
classified
overall

Training Set
substrates 76 64/36 49/27
nonsubstrates 68 4/96 66/2
all 144 115/29 80

Test Set
substrates 32 53/47 17/15
nonsubstrates 19 21/79 15/4
all 51 32/19 63
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bond donors and not acceptors.25 In the model presented
here, half of the pharmacophores (50 of 100) in the
ensemble contain the feature combination: hydrogen
bond acceptor, donor, and one or two hydrophobic
groups. These results support the importance of both
hydrogen bond donors and hydrogen bond acceptors in
substrate binding to P-gp.

Conclusion. In this Letter we describe the construc-
tion and validation of a computational model for recog-
nizing substrates for P-gp. The model consists of an
ensemble of 100 two-, three-, and four-point pharma-
cophores that together are able to capture the various
chemotypes that may interact via multiple binding sites
and binding modes with P-gp. Cross-validation of the
training set and filtering of a hold-out set of compounds
that are chemically dissimilar to the training set
demonstrated that the model correctly classifies 50-
60% of the P-gp substrates and greater than 80% of the
nonsubstrates. We anticipate that the computational
model described in this Letter may be applied rapidly
and routinely to filter likely P-gp substrates from virtual
libraries.
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Figure 2. Four-point pharmacophores from the ensemble
model, mapped onto conformations of nicardipine (a) and
indinavir (b and c). The pharmacophore in part a contains two
hydrogen bond acceptors separated by ∼4.8 Å (red line),
consistent with the Seelig’s type II pattern definition. The
pharmacophore shown in part b contains an example of a type
I pattern, two hydrogen bond acceptors separated by ∼2.5 Å
(red line). The four-point pharmacophore mapped in part c
represents the top scoring pharmacophore in the ensemble.
The features of the pharmacophores are colored: hydrogen
bond acceptor (magenta), hydrogen bond donor (cyan), and
hydrophobe (brown).
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